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ABSTRACT 

This report describes CEL,  a conversational extensible 
language.    Its syntax,  data,   control structures and conversational 
features are presented and compared to those of other languages. 
Its use is illustrated by means of several examples in the areas of 
list processing,  polynomial arithmetic,  formula manipulation, 
vector arithmetic,  trees and syntax analysis,   complex and 
rational arithmetic and block structure and own variables. 
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SECTION   I 

Introduction 

In November 1969 the author undertook the design of a 

conversational extensible language and the implementation of that 

language on Harvard University's PDP-10 Computer.    That design 

is now complete and the language processor that was built,   CEL, 

is now running.    The purpose of this paper is to describe the language 

and its use. 

There are today,   it has been estimated,   over 1700 differ- 

ent programming languages in over 40 special application areas. 

Thus he who proposes another language must either be able to show 

that it serves a purpose not already better served by one of its pre- 

decessors or else be judged guilty of having done no more than con- 

tributed to the flood of languages.    We will argue that the language 

presented here is especially useful for a significant class of users and 

variety of uses by virtue of being both conversational and extensible. 

We will argue further that the properties of conversationality and ex- 

tensibility are particularly suited to being combined in a single lan- 

guage.    Thus we feel justified in unleashing CEL on the world. 
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SECTION II 

The   Limits    of   Conventional   Languages 

A.       An   Introduction 

In computing we have theoretical constructs (e. g.   the Turing 

Machine or Markov Algorithm) capable,   if Church's Thesis is correct, 

of computing any result for which we can specify a sufficiently pre- 

cise procedure.    Yet we find that the practical problem of computing 

something even moderately complex is often a great strain on our 

talents.    It may be that a reason for this distinction between what is 

computable in theory and what is computable in practice is the inade- 

quacy of the tools we use to describe computation to our machines - 

that is,   programming languages. 

Programming languages range from absolute machine code 

and assembly languages to a wide variety of higher level languages. 

The former give us total flexibility and computational power and the 

efficiency of hand tailored models.     The price we pay for this power 

and efficiency is that programs written in assembly languages to solve 

hard problems are generally of immense length and complexity.     In 

this respect one notes that the production of the OS/360 operating 

system has so far taken three man millenia of effort and cost on the 

order of 100 million dollars.     The current result is a program whose 

length is over 5 million lines of code and which is still not completely 

debugged[22]. 

Hence for a wide variety of problems we have sought 
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refuge from this complexity in the higher level languages.     Let us 

consider then the scope of applicability of various kinds of higher level 

languages.    It is a reasonable approximation,   for this purpose,  to 

classify higher level languages as either special or general purpose 

and to break down the latter class into monolithic and extensible (or, 

to use Cheatham's terms,   shell and core) languages. 

B.  Special Purpose Languages 

Two of the best known special purpose languages are 

FORTRAN and ALGOL 60.    These permit the production of programs 

that are fairly readable and short,   especially by comparison with ma- 

chine code,   for the things it is reasonable to do in ALGOL or FORTRAN. 

This includes,  however,  only straightforward numerical computations. 

Attempts at hard symbol manipulation problems in ALGOL or FORTRAN 

generally are so much less efficient than machine code,   if perhaps 

more readable,   as to be prohibitively expensive.     One may note that 

the reason these languages are inefficient in these sorts of computa- 

tions is that the languages do not provide very much richness in their 

data structures or syntax - what is there is built in and effectively 

cast in concrete.    If what one wants to  do is readily done in the syn- 

tax and with the data structures provided,  well and good.    If not,   one 

must look elsewhere. 

There is what appears at first glance to be a solution to this 

problem.    If ALGOL 60,   for example,   doesn't provide the forms appro- 
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priate to a particular problem area,   surely one can find a language 

that does,   since there are languages particularly suited to each of a 

large variety of problem categories.    This isn't,  however,   always 

an adequate answer.    If there is a language suited to a problem (and 

if it is a problem not like any previously treated with computer methods 

there probably won't be) it may well be unknown to the user who needs 

it.    Certainly the learning of any sizeable subset of the existing pro- 

gramming languages is too great a burden to impose on most com- 

puter users.    Even if our hypothetical user does know a language 

suited to his problem,   he will in all likelihood discover that it has not 

been implemented on the computers to which he has access.     Finally, 

and most importantly,   if a particular user requires the resources of 

two or more distinct problem oriented languages,   he will find that 

there is no general or easy way to obtain in a single language the de- 

sired union of subsets of several different languages. 

C.  General Purpose Languages 

1.  Shell Languages 

We have a few alternatives remaining.     One is to try,   whenever 

the special purpose languages do not serve,   to use one of the general 

purpose shell languages,   e. g. ,   PL/1.    Although these do provide a 

very rich data space,  they generally do not provide very much varia- 

bility of syntax.     Furthermore,  they are built on the assumption that 

every user needs all data structures and techniques.    As a consequence, 
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they force their users to pay the overhead associated with all the 

language's components - those that are needed for a problem as well 

as those that are not.    The construction of such all inclusive blends, 

besides being a massive programming effort,  must,  by its very nature, 

involve the making of a number of decisions at the time of language 

design.     Even where these don't create anomalies (e. g.   7<6<5 has the 

value TRUE in PL/1) many are bound to differ from the decision that 

would have been made by some class of future users.     For example, 

if A and B are conformable matrices,   PL/1 will always interpret 

A*B as the element by element product.    There is no reasonable way 

to override this and have A*B mean the normal matrix product. 

2.       Extensible   Languages 

If then,  there is a never ending source of problems for which 

existing special purpose and shell languages are not suited,   we will 

be forced to build a new language processor for each of a number of 

machines every time such a problem arises.    When one considers the 

number of existing programming languages,   it becomes clear that many 

people have found it necessary to do just that.    Since the building of 

a language processor usually requires a substantial investment of 

time and money,   an investment one would prefer to make in a more 

direct attack on the problem one is solving,  the cost of this approach 

makes it impractical as anything more than a stopgap if there is another 

option open. 
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Therefore we claim that what is needed is a type of language 

which is sufficiently flexible in its syntax and data as to be moldable 

into the forms required for a large class of problems at a cost much 

below that of producing a new language from scratch.    We further claim 

that the core or extensible language is of this type.    Before proceeding 

to describe such languages,  and in particular CEL,  we point out that 

the choice between the extensible and the shell language is often not 

clear-cut.    The user of an extensible language who must extend it, 

for some problem,  to the level of complexity of a PL/1,  will probably 

produce a product that is a good deal less workable than PL/1.     More- 

over,  the user whose problem area requires the use of forms avail- 

able in some shell language,  may find that the shell representation is 

sufficiently more efficient than any he can build out of the primitives 

of an extensible language,   to make it cheaper to pay the extra overhead 

associated with the use of a shell language.    The extensible language 

is not intended to best serve the needs of users with problems of these 

sorts.    It is intended for the user for whom convenience of represent- 

ation,   directness and ease of use and variability of syntax are more 

precious commodities than efficiency of execution. 
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SECTION in 

Features   of   Extensible   Languages 

A.      Data 

The object of the extensible language is the provision of a 

variable and flexible syntax and a data space that will host a very large 

variety of problem types.    The designs of the extensible languages 

now extant suggest that a sufficiently rich data space is obtained by 

adding to the data types of the conventional languages a few data type 

definition operators.    These are,   in general,   operators which act on 

existing data types to produce new data types.    Let us now describe 

these operators and the definition process. 

One begins with the set of atomic types initially defined in 

the base language.    These are usually those types which,  though defin- 

able by means of the data type definition operators,   require special 

treatment for purposes of efficiency and are likely to be required in 

a significant class of extensions of the base.    Such a set might be 

{real,   integer,   literal,   nil},  though it might also contain multipre- 

cision varieties of these.    Let us now list the data type constructors. 

The first of these is the operator that defines row construct- 

ors.    It takes as arguments a data type and a positive integer length 

and produces a constructor that creates rows of that length when applied 

to arguments of that type.    For example,   if In denotes the row of n 

integers 1, 2, . . . , n then I    = row(integer, n)(l, . . . , n).    Several points 

should be noted about this constructor.    First,   it is sufficient to pro- 
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vide a one dimensional array constructor since an array of higher di- 

mension k can be represented as a row of k (k-1)-dimensional arrays. 

Second,  this constructor will construct only homogeneous rows - 

rows whose elements all have the same type.    There are good reasons, 

related to the efficiency of compiled code,   for including this constraint 

in compiled languages.    In CEL however,   as we shall see,  these are 

not operative.    Third we note that the row data type constructor may 

permit the length to be missing.    In this case the data type produced 

will be a row of dynamic length. 

A second data type constructor is the struct   (to use the 

terminology of BASEL).    It creates data types that have several com- 

ponents,   in general of different types.    For example the type 

struct(rp;real, ipireal) has two real components,   called rp and ip re- 

spectively,   and is useful to  model complex numbers.     In general 
n 8jv 

struct(S|:ti)i=i is a data type with n components,   the i     called s{ and 

of type t{.    Another instance of this is a struct(stack:row(100> real), level: 

integer) which might be used to model a stack of reals whose maximum 

depth is 100. 

A third data type constructor creates references,   i. e. , 

pointers to data.     We note that one useful application of the ref  is the 

modeling of "call by reference" in a language that does not explicitly 

provide for it - since the value of a ref is a pointer to the datum and 

the value of this value is,   in turn,   the datum pointed to.     Moreover 
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it permits sharing - that is,  the independent accessing of the same 

datum via different pointers. 

Finally,   extensible languages generally provide a union 
n 

constructor which acts on a set of types {t^}.,   to produce a type t 

defined by (x is of type t)< --> (5 i) (t£i<n)(x is of type tj).    For exam- 

ple,  we can use union to define "list-of-integers" as follows 

list-of-integers  = union (pair-of-integers, nil) 

pair-of-integers  = struct (head:integer, tail:list-of-integers). 

We  note that there is usually a type denoted by any(or general or free) 

defined by (x is of type any)<-->TRUE,   i. e. ,   every datum is of this 

type. 

Having constructed an extended set of types,   we need a num- 

ber of functions to transact with them.    These may be classified as 

constructors,  predicates and selectors.    For each non-atomic type t 

we need a function "construct-t" which given an appropriate set of 

arguments constructs a datum of type t.    We need a predicate on two 

arguments which for a datum x and a type t tells us whether x is of 

type t.    Finally,  we need selectors which produce from a datum its 

component parts. 

We note that selection is trivial for rows,   and is accom- 
n 

plished by subscripting.    For a data type struct (s-:tj)-=| the constructor 
n 

is a function t = [XxjXx^. . . Xxn. struct (S*:XJ).   .}  and the selectors are 

the functions fj such that fj(t(x ,. . . ,xn))  = x:.     It is clear that there 
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are a number of choices to be made as to how constructed data types 

and their associated functions are to be designated.    Let us therefore 

indicate the choices made in three extensible languages - Jorrand's 

BASEL[4,6,8,16],   Garwick's GPL[8, 18],   and CEL. 

In BASEL to define the mode complex and deal with it one 

might write 

(let complex rep struct[real rp, real ip], 

z t>e complex in 

z = complex[l. 0, 2. 0]; rp of_z = 4. 0;. . .   ) 

We note that here the data type name itself is the name of the con- 

structor function and that selection is accomplished with the operator 

of.     BASEL provides a union type operator as described above and 

a special predicate to test the type of a variable,   e. g. , 

(let u be union(int or bool) in 

u = 1;... 

u = TRUE;. . . 

when u is^ int then 

factorial[u] else ) 

BASEL has a pointer data type called loc   and provides a function 

alloc  which creates data of this type,   e. g. , 

(let i be_int,  j be loc int in 

i = l;j = alloc 2; 

j-->i;i = plus[i, val j];. . . ) 

Here the operator val follows the pointer and the operator "-->" 

points the pointer at i. 
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A variable which is a row of k real numbers in BASEL has 

type row k of real,  where k is a positive integer.    If arrays of dynamic 

size are desired,  any may be substituted for k in the mode descriptor.. 

Similarly,  to declare complex in GPL one would write 

block complex f real rp,   ip}; 

complex z;z-->complex(l. 0, 2. 0);4. 0-->rp(z);. . .   ) 

Here the data type's name is the name of the constructor function. 

The '-->' is GPL's assignment operator.    Selection is denoted by 

functional notation.    Although GPL does not explicitly provide a union 

operator,   its pointers,  which have mode ptr ,   can point to data of var- 

iable type.    A predicate much like that in BASEL is provided for type 

testing,   e. g. ,   one might write 

iff integer u . . . ; iff boolean u;. . . 

One defines an array data type in GPL by writing,   for ex- 

ample,   "array vector of real. "    This defines the type vector to mean a 

linear array of real numbers,   each accessed by specifying its ordinal 

position in the array.    GPL permits the bounds of such an array either 

to be specified by declaration or determined dynamically. 

The nearest equivalents of these examples in CEL have some- 

what different behavioral properties because CEL is an interpretive 

language.    This means that the machinery of the language processor 

is all present at the time of program execution and hence that it is 
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possible to dispense with type declarations.    The type of a variable 

is simply the type of the last datum assigned to it or NIL if no assign- 

ment to it has occurred.    Another way to view this is to think of type 

as a property not of variables but of values.    To make Z the complex 

1. 0+2. 01 one would write,  without preliminaries, 

Z<--MKSTR(RP:1. 0,IP:2. 0). 

The function MKSTR is one of CEL's library functions and creates a 

datum of type struct.    If one wishes to create data of type complex 

more conveniently,   one can define a function COMPLEX,  taking two 

arguments and returning a datum constructed as above.    Then one could 

write,  as in GPL or BASEL, 

Z< --COMPLEX(1. 0,2. 0). 

Having defined the type complex,   one might choose to model quatern- 

ions using the same constructor,   giving it not real but instead complex 

arguments.    Since types are dynamic,   one could write 

Z<--COMPLEX(COMPLEX(l. 0,2. 5), COMPLEX(3. 1, -4.7)). 

Selection from a struct is accomplished by writing the name 

of the component desired in square brackets following the expression 

whose value is the struct.     For example if Z is a struct(RP:l. 0,IP:-2. 5) 

then Z[RP] = 1. 0 and Z[lP] = -2. 5.    Selection can be iterated for 

struct 's with components that are struct 's,   e. g. ,   If a is 

struct(al:struct(a2:struct(a3;x))) then a[al;a2;a3] = x.   Selection can 

also be accomplished by subscripting with the ordinal position of the 

component desired,   as in GPL.    For example,   a(l)(l)(l)  = x. 
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Predicates to test the type of a variable are available in 

several varieties.    First of all there is a library function ILK which 

returns the type of its argument as an integer code (see Appendix A). 

Further discrimination is possible via the invocation of library functions 

that return the number of components of a struct or the name of its 

i     component as a literal.    One may more conveniently test the type 

of a datum by defining the constructor in such a way that it will insert 

the additional information at the time of construction,   for example 

Z   <-- MKSTR(TYPE:"COMPM,RP:l. 0,IP:3. 2) 

Z2<-- MKSTR (TYPE:nPOLAR",RHO:l. 0,THETA:3. 2) 

We note that constructor functions defined to create data of type Zl 

or Z2 would still take two arguments.    We claim that this method of 

detecting type is probably optimal,   since any given user of the language 

will want to distinguish between only a subset of the data structures he 

is using,   and he can insert the minimum amount of additional information 

into the data structures that is needed for this purpose. 

It should be noted that the dynamic types of CEL,   as opposed 

to the declared and fixed types of languages such as BASEL or GPL, 

are not always an advantage.    In particular,   if types are dynamic,   it 

is necessary to execute programs interpretively so that type testing 

and switching are done correctly.    The BASEL or GPL processors, 

on the other hand,  will refuse to compile a statement of the form 

'rp of_z = alloc 1. 0' if z is complex.    They can thus virtually eliminate 

run time type switching (exceptions being the iff clause of GPL and the 
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when  clause of BASEL.) whereas it is always present in CEL,    The 

tradeoff here is the standard one between efficiency and flexibility. 

The notion of union in GPL,   BASEL and other extensible 

languages is primarily a means of overcoming the restrictions imposed 

on the values of variables by type declarations.    Since CEL contains 

no declarations,  the union  operation is largely superfluous,   except 

where used for the convenient creation of predicates for testing type 

class membership as described below. 

Rows are created in CEL in two ways.    The first is by in- 

voking the library function MKROW which takes as arguments any num- 

ber of data and creates a row having these data as its elements.    The 

second method of row creation is via the function MKNRW (Make Nil 

Row) which takes a single positive integer as argument and creates 

a row of that length with all its elements initially of type NIL.    Since 

CEL types are dynamic,   CEL need not make special provision for 

rows of dynamic size. 

One property of BASEL or GPL's declarations,   however, 

would for some purposes be a great convenience in CEL.    This id that a 

type definition automatically creates convenient notations for the con- 

structor and predicate functions.    Indeed,   let us describe a possible 

straightforward    extension of CEL that would add to CEL a data defin- 

ition facility of the   sort offered in BASEL or GPL.    In particular we 

want a facility which accepts the equivalent of BASEL'S  'let  complex 

rep struct[real rp, real ip]' and automatically adds to the system a 
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constructor function that creates complex data and a predicate that 

tests whether an arbitrary datum is complex.    It need not add selection 

functions,   since a sufficient facility for these is automatically present, 

e. g. , if z is a struct(rp:l. 0, ip:2. 0),  then z[rp] and z[ip] (also z(l) and 

z(2)) are its components. 

Consider the terminal sentences generated by <ddef> in the 

following grammar: 

<ddef>:: =$<definiendum> = <definiens >$ 

< definiendum>:: =< identifier > 

<type>::=<identifier>| real | integer| literal] any| nil 

<definiens>:: =<structure pattern>| <alternate pattern>| 

<sequence pattern>| <reference pattern> 

<structure pattern>:: =struct(<pattern component list>) 

<pattern component list>:: =<pattern component>| <pattern 

component>,<pattern component list> 

<pattern component:: =< selector>:<type> 

< s ele c to r>:: =< ide ntif ie r> 

<alternate pattern>:: =<type>| <type> or   <alternate pattern> 

<sequence pattern>:; =seq(<type>) 

<reference pattern>:: =ref (<type>) 

These are a modified version of a subset of the data definition com- 

ponent of Standish's Polymorphic Programming Language (PPL). 

The semantics associated with the rules of the above are most easily 

explained via some examples.    Consider the following <dde£>fs : 
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1. Complex g struct (rpireal. ip:real) 

2. Complexrow c seq(complex) 

3. Listofcomplex = complex ox pairofcomplex 

4. Pairofcomplex = structfcar: listofcomplex. cdr:listofcomplex) 

(1) and (2) define,   respectively,   complex variables and rows of indef- 

inite length of complex variables.    (3) and (4) define a list structure 

whose atoms are complex variables (for further details,   see Section VI   B). 

We desire the result of writing these definitions to be that the system 

generates several functions - 

(a) three constructor functions - complex,   complexrow 

and pairofcomplex which take two,   indefinitely many 

and two arguments respectively and produce structures 

of the appropriate form and 

(b) predicates of the form element(x, t) (which we will 

write as xet) whose domain is {x| x is a datum)x 

{t| t is a <type>}  which will now have the value 

TRUE for the following pairs of the form (datum, type): 

(complex, complex),   (complexrow, complexrow), 

(complex, listofcomplex),   (pairofcomplex, listofcomplex), 

and (pairofcomplex, pairofcomplex) as well as those 

pairs for which it was previously true. 

We now give a precise description of the functions which are added 

to the set of defined functions for each<ddef>.    In what follows s and 

Si will denote <selector's and t and tj will denote   <type>'s.    I(t) 
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is a unique constant associated with the identifier t. 

For each<dde£> with <definiendum> the identifier t,   create 

a struct named t and equal to struct(predicate:a, constructorrb) with 

a and b defined as follows: 

If the <definiens> is a <structure pattern> of the form 

struct(s^:ti)._.  set tfpredicate] = {Xx. x[type] = i(t)}  and t[constructor] = 

{Xx1...Xxn.MKSTR((si:ti).^1   ,type:i(t) j 

If the <definiens> is an<alternate pattern> of the form 

t^ or . ..   or tn set t[predicate] = [Xx. (xetjj or  ...   or (xet )} and leave 

tfconstructor] undefined. 

If the <definiens> is a <sequence pattern> of the form 

seq(t')set tfconstructor] = {Xxj  ... Xxn  MKROW(xj(,,,,xn)J and t[predicate] = 

{Xx. x(l)et' AILK(x)  = seq}.    (In this and the next definition,   we use 

'ref and 'seq' as variables whose value is the internal code for the 

types ref and seq ,   respectively).     Here n is indeterminate. 

Finally,   if the <definiens> is a <reference pattern> of the 

form ref(t') set t[predicate] = {Xx. (VLPTR(x)et')A(ILK(x) = ref)}  and 

t[constructor] = f Xx. MKREF(x)}. 

Define the construct and element functions by: 

Construct((x^=j , t)  = if atomic(t) then undefined else t[con- 

structor](xi)i=i ;Xet = if atomic(t) then (ILK(x) = i(t)) else t[predicate](x); 
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B.       Syntax 

Much of the effectiveness that is the goal of the extensible 

language is lost if,  although data types are flexible,   syntax is not. 

A programmer who has defined a set of unusual data types for a par- 

ticular application will probably want to program in a notation similarly 

selected for that application.    If,  for example,  he has defined a data 

space that contains list structured objects,  he may wish to decree that 

'x+y' is to have the value obtained by concatenating x and y whenever 

either is a list,  and the previously defined value in all other cases. 

If his application is such that he must frequently write the equivalent 

of the special case "for i = 1 step 1 until n do . . . "    of the ALGOL 60 

for statement,   he may wish to specify that that is the meaning of 

"for i -->n do . . . ".    In short,  he wishes to define a syntax which 

emphasizes what is  variable in his application,   minimizes what is 

constant and mirrors the laws of combination and growth of the ob- 

jects he is manipulating. 

BASEL provides no such facility,  but it is intended to be 

part of a larger "extensible language facility" which would presumably 

permit some kind of syntax variability[6].    GPL contains three methods 

for achieving a flexible syntax.    First,   it permits the definition of new 

infix operators with associated priorities.    Second,   it allows a much 

more general form of procedure call than is conventional,   e. g. ,   per- 

mitting a user to define "ifmid a of b, c then d else e" as the calling 

sequence for a procedure ifmid on five arguments.    Finally,  GPL 
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contains a macro expansion facility whereby after the declaration 

procedure dist(a, b); 

iff 2 space a, b take macro sqrt((x(a) -x(b))t 2+(y(a) -y(b))t 2); 

an occurrence of "dist(s,t)M will be expanded to produce the in line 

code "sqrt((x(s)-x(t))t2+(y(s)-y(t))t2)". 

A somewhat more general and powerful facility for adding 

syntax variability employs the mechanism of the Brooker and Morris 

Compiler-Compiler.    Here one specifies an augmented BNF grammar 

for the language in which one wants to program.    The augments can, 

for example,   be transduction elements which translate a user's ex- 

tension of the base syntax into the system's base language[3, 30]. 

The component of CEL which provides syntax variability is 

at present ad hoc,   and we intend eventually to provide a facility of the 

Brooker and Morris sort in CEL.     In the current definition,   a user 

provides a function,  written in CEL,  which when invoked will trans- 

late a statement in the language in which the user wishes to program 

to the equivalent CEL base statement.     That it is possible to write 

functions in CEL which act as syntax transducers is demonstrated 

by some of the examples of CEL programs given below.    However it 

is equally clear that one does not,   in general,   want to require a CEL 

user to program his own transduction algorithm,   and hence we will 

replace this mechanism by one of greater sophistication in a future 

revised definition of CEL. 
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C .       Control 

Programming languages have several aspects whose system- 

atic variation we may profitably study.    Thus far we have discussed 

the data and syntax of extensible languages.    One might also want to 

vary the control structure of a language,   e. g.   to obtain co-routines, 

clock driven simulations,  multiple parallel returns by subroutines, 

parallel processing,   continuously evaluating expressions,   and so on. 

Thus one would expect an ideal extensible language to provide mechan- 

isms for varying control that were sufficient to add such features. 

Unfortunately,   determining what constitutes an optimal (or even a good) 

set of primitives from which common control structures can be built, 

is at present an unsolved problem.    We know of no existing implementa- 

tion of an extensible language which provides such features (with the 

possible exception of ALGOL 68's parallel execution expression and 

PL/l's ON statement) although Standish's design of PPL does make a 

number of such provisions which depart from orthodox control struc- 

tures[29, 31],    Introducing such facilities into CEL would probably 

require a drastic departure from the current implementation's scheme 

of driving program execution from a pair of push down stacks.    Hence 

we leave the problem of designing and implementing mechanisms for 

including variability of control structures in higher level languages 

to future researchers. 
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SECTION IV 

Conversation   and   Interpretation 

IV.       Conversation   and   Interpretation 

Let us now digress temporarily from the subject of extensib- 

ility to discuss the styles of debugging typical of each of two broad 

classes of languages,  the   non-interactive and interactive. The first 

of these consists of languages which are usually compiled and executed 

in a 'batch' environment.    Most implementations of PL/1,  ALGOL 60, 

FORTRAN and COBOL are in this category.    On the other hand,  there 

are interactive languages which are usually executed interpretively 

in a form close to that in which the programmer wrote.    These languages 

permit the user to interact with a running program and to compose, 

modify and debug programs at a rapid pace.    We generally find these 

in a time-shared and conversational environment - such languages as 

APL,  JOSS,  CAL,   LISP,   and so on. 

Detecting errors in a non-interactive environment is usually 

a time consuming and tedious task.    Typically one submits a program, 

for example as a deck of cards,   and several hours later gets it back 

along with the results of the run.    Usually these results are some 

mixture of wrong results and error messages.    At this point,   since 

one cannot interactively control and modify the program's execution, 

one can track down the source of errors only by 

(a) desk checking - carrying out parts of the computation 

by hand,  as the program directs,  with sample inputs or 

(b) requesting periodic printouts of partial results during 

the program's next run. 

One generally employs some combination of these and gets,   at the 

-21- 



end of the second and successive runs,  massive amounts of material, 

most of it irrelevant to the problem of error detection,  which must 

nevertheless be scanned through in an attempt to find the significant 

parts.    If it is the case that one can learn nothing at all from the re- 

sults produced after the first couple of errors occurred,  then one 

is faced with the necessity of iterating this procedure several times 

in order to detect bugs in a non-trivial program. 

Debugging in languages of the second kind is a much less 

unpleasant task.     Because the environment is interactive,   one can 

dispense with core dumps and instead selectively investigate relevant 

evidence of errors.    Good interactive languages permit one to study 

partial results and to phrase questions at the level of the source pro- 

gram.    In addition one can desk check far more easily than in a batch 

system,  because one can use the computer to do the mechanical parts 

(e. g.   hand computation) of desk checking. 

In most conversational language systems there are a num- 

ber of features that further ease the debugging process.    APL,   for 

example,   a prime example of a well-constructed conversational lan- 

guage system,   allows the programmer to set break points in the pro- 

gram which,  when encountered during execution,  will suspend exe- 

cution and return control to the user's teletype.    He can then examine 

and modify the values of variables before continuing the computation 

at the break or any other point.    APL further permits the user to trace 
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the execution of a subset of program statements,   i. e„  to specify that 

every time one of these statements has been executed,  the number of 

the statement and its result are to be output on the user's teletype. 

Once an error has been located by these means,  a user may edit single 

statements or larger parts of the program,   and immediately inves- 

tigate the effect of the changes made[l, 15].    Finally,   we note that in 

a conversational system one can take advantage of strange occurrences 

(e. g. ,   a computation taking longer than it should or an output that 

differs from expectations) to look at the effect of an error near its 

source.    In batch systems,  by comparison,   one frequently detects 

the presence of an error via some subtle change at a remote place 

in the program or its output. 

Lest we be accused of unfairly stating the relative merits 

of interactive and non-interactive systems,   we hasten to point out that 

experimental comparisons of productivity in these two media are not 

conclusive.     It is difficult to obtain good comparisons between pro- 

grammers working in different languages and at the same time it is 

unfair to draw conclusions from the performance of a batch language 

in a time-shared system or vice-versa.    Thus we can only state our 

own distinct preference for conversational systems and point to the 

similar statements and results of others[l4, 24, 27]. 

It is certainly the case that interpreted programs do not 

run as rapidly as compiled versions of the same programs.    However, 

in many applications such factors as the programmer's ability to 
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absorb results acts as a more restrictive constraint than running time. 

Moreover,   one can often achieve the best results of both compilation 

and interpretation by including,  in an interpreted language,   a compile 

operator (e. g.   the one in LISP) which one applies to a function after 

one is through debugging it.    It is converted into machine code and 

thereafter runs at the rate of a compiled program.    Finally there is 

evidence (qv.   [14]) that total costs of man hours and machine time 

are lower in time-shared systems. 

We claim that the dynamic style of programming in a con- 

versational system meshes very nicely with the flexible nature of ex- 

tensible languages.    The resulting freedom is a major step toward 

making the process of programming as natural as possible for the pro- 

grammer.    This is consistent with the philosophical objective,   in 

extensible languages,   of letting a programmer express his thoughts 

about a problem with a minimum of artifice or translation. 

The pressure of time has prevented the inclusion in CEL's 

current implementation of a full-fledged conversational debugging 

facility.    One can do automated desk checking via an immediate exe- 

cution feature,  but this would not be adequate in the final form of the 

language.    We hope to add a break point debugging and selective trace 

facility such as that of APL. 

The current implementation does not contain,   again because 
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of the pressures of time,  a text editing component.    Until such a com- 

ponent can be implemented,  an ad hoc provision has been made,  where- 

by CEL programs can be created and edited using the PDP-10's TECO 

(Text Editor and Corrector) Program.    This measure has sufficed 

for the creation of the CEL programs given below. 
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SECTION   V 

Description of CEL 

Let us now describe CEL in  some detail.    The fragments 

of CEL programs given above are written in the language defined by 

the standard front end syntax of the current implementation.    However, 

for the  purposes of this section,  we revert to thinking in terms of 

CEL's base language.    This is defined by the following grammar 

with root symbol <program>: 

1 <program>::=<message> 

2-3 <message>::=<function definition>|<statement 

4 <function definitions: =$<function headerxfunction body>$ 

5 <function headers ::=< identifiers (< identifier list>)<identifier 

list>;<identifier list>; 

6-7 <identifier list>::= empty|<identifiers{ ,<identifiers}* 

8 <function body>:: ={< statements} 

9 < statements:: ={<expression>} 

10-14 <expressions:: =<identifiers| <constants) ({< expressions}   ) 

<expres sion> :<identifiers | <expres siort> ]<identifiers 

In this grammar, ::=, | ,{,}, + and * are metasymbols.     { A}* means 

zero or more A's.    {A}     means one or more A's.   identifiers and 

<constantS are lexical tokens whose composition need not further con- 

cern us here. 

A CEL program is a sequence of either function definitions 

or direct commands.    The former result in the saving of the defined 

function for later execution,  whereas the latter usually invoke one or 

more previously defined functions.    We see from (9) that a statement 
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is a sequence of expressions  - the associated meaning is that the ex- 

ecution of a statement consists of the successive evaluation of its 

constituent expressions,   read from left to right.    The value of an ex- 

pression e is recursively defined as follows (the value assigned to 

<identifier> is later qualified): 

Val(e) = if e is a constant then e else 

if e is an identifier then if an assignment operator 

has been called with the identifier as the left 

operand,  then the value of the right operand at 

the last such call within the scope of the identifier 

and   NIL otherwise else 

if e is of the form e']i then 

if e' is a struct with a component named i then val 

applied to the i component of e' and otherwise error 

else 

if e is of the form e':i then val(e') else 

if e is of the form (e^ e^   . . .    en e') then 

if e' is a row then 

if n = 1 and val(ei) is a positive integer m 

< length(e') then val applied to the m      component 

of e' and otherwise error else 

if e' is a function then (see below) else 

error; 
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We must now define the value of the expression e = (e^  ...    en e') 

where e' is a function.    If n is not the number of arguments that e' 

requires,  there is an error condition.    If e' is a library function,  the 

value and/or side effects due to evaluating it with arguments e^,    . . . , en 

are specified in Appendix A.    Otherwise e1 is a programmer defined 

function.    E is then evaluated by calling e',   supplying it with val(e[), 

. . . , val(en) as arguments and using the result(s) returned by e' at its 

exit as val(e). 

Finally we define the process of calling a programmer defined 

function f with arguments ei,. . . , en.    Suppose the header of f is 

"f(xj,. . . »Xgjr^, . . . , r ;Lf. . . , 1  ;" and that it contains k statements, 

numbered 1, . . . , k.    Then to call f we 

(1) Set a program counter c to one. 

(2) Execute the c'th statement of f , 

(3) Set c to c+1.    If ok then exit returning r., . . . , r 

as results.    Otherwise,  proceed from (2). 

(A transfer statement achieves its effect by changing 

the value of c). 

An identifier i is evaluated within f as follows  - if i iß not one 

of the locals of f (i. e.   one of the x^'s,   r^'s or l^'s) then its value is 

the same as if i had been encountered outside f.    If i is a local of f, 

its value is that last assigned to i since f was last entered.     If no such 

assignment has been made and i is not one of the x^'s,  then val(i)  = NIL. 

If i is x-,  then val(i)  = val(ej).    An assignment within f to a local of 

f has no effect on the value of another identifier of the same name 
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existing outside f.    Here "outside f" means either inside some other 

function,   inside any other call of f (if f is recursive) or outside all 

functions. 

This base language has been chosen for CEL for several 

reasons.    It is relatively simple yet powerful enough to express all 

the constructs we wish to include in CEL.    Statements in it can be 

executed efficiently since it is SLR(l) (i. e. ,   at any stage in a parse, 

the next applicable reduction is unambiguously determined by inspec- 

tion of at most one symbol to the right of the current symbol) and 

indeed,  the current implementation does a small amount of prepro- 

cessing to make it SLR(O).    There are no reserved words,   which makes 

learning the language easier than it would otherwise be.    Finally, 

we can translate from a number of front end syntaxes to this base with- 

out much difficulty.    On the other hand,  programs written in the base 

are relatively unreadable.     Because we always intend to program in 

some front end syntax,  this is not a problem. 

CEL's standard front end syntax in the current implementation 

is defined in terms of the base syntax by the following transduction 

grammar G: 
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<statement>::=<identifierS:< expressions @ T< expressions ^identifiers 

< statements:: =<expres s ions 

<expression>:: =<termSa< expressions Q T(<term><expression>f(a)) 

<expression>:: = a<expressions  @T(<expression>f(a)) 

< expressions:: =<term> 

<termS::=<constants|< identifiers 

<termS :: = (< statements) @< statements 

<terms:: =<termS() @_(<termS) 

<term>::=<termS({statement>}   ) @     ([<statements]  <termS) 

<termS:: =<term>^identifiers {^identifiers] *] @    <term>]<identifiers 

{^identifiers}* 

There is a version of each rule containing "a" for each infix operator 

that is to be used.     For each such operator,   f(a) is the name of a CEL 

function that computes  its  value for the correct number of arguments. 

The base language translation of a statement written in this 

syntax may be determined by following this  recipe - 

(1) Obtain a parse tree in G for the statement. 

This  is a particularly easy process  since G 

is an operator precedence grammar with f 

and g functions (qv.   [ll] and Appendix B). 

(2) Rearrange the sons of each nonterminal node x 

(possibly deleting some and inserting others) 

according to the transduction element for the 

rule of g that corresponds to the node and its 
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sons. 

(3)   Read off the terminal nodes of the modified tree in 

left to right order,   obtaining the translated statement. 
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SECTION   VI 

Programming in CEL 

A.       An   Introduction 

We now present several extensions of CEL.     Each consists 

of a number of functions which manipulate the data types of the exten- 

sion.    In order to conveniently explain how they work,  we will insert 

descriptive text between fragments of the actual CEL text,  though of 

course this description would be omitted during a computer session 

using CEL* 

*The program text was produced by a device which uses "    -*   " 

for ■»-->■' and "   *    " for "*'«. 
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B.       List   Processing 

The major data types of this extension are defined  as follows: 

Atom = integer or real or literal or nil 

Pair = struct(car:listel, cdrilistel) 

Listel = atom or pair 

The data type pair corresponds to the dotted pair of LISP.    We first 

define several of the elementary functions of LISP - 

$CONS(A,B)R55 
[l]   R<--MKSTR(CAR:A,CDR!B) 

$ 

$CAR(X)R$5 
[1]     AT0M(X)->4 
[2]     R<~ X[CAR] 

$CDR(X)RJ5 
[1]     AT0M(X)->3 
[2]     R<--X[CDR] 

$AT0M(X)RJ* 
[1]     R<~ILK(X)+4 

Cons is a constructor function that takes a pair of arguments, 

presumably of type listel,   and makes a pair out of them.    Car and cdr 

are generalized selectors  - they return the appropriate component if 

it exists,  but NIL if it doesn't (i. e.   if the argument is an atom).    They 

accomplish this by,   for atomic arguments,   exiting from the procedure 

without making an assignment to the result R,   and hence return NIL 

according to the rules given in Section V.    Atom is a predicate 
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which distinguishes atoms from non-atoms using the fact that in 

this extension the only non-atoms are structs, and that any struct 

x satisfies ILK(x) = 4.    We next define a function list which creates 

structures corresponding to the list of LISP,   i. e. ,   data x satisfying 

(1) xelistel and 

(2) if atom(cdr(x)) then cdr(x)  = NIL. 

$LIST(X)RJ5 
[1] (lLK(X)=6)-»4 
[2] R<—CONS(X,NIL) 
[3] +20      , x 
[4] J<--LNGTH(X) 
[5] R<_C0NS(X(J),R) 
[6] (j=l)->20 
[7] J<~J- 1 
[8] +5 

Lists are a proper subset of pairs,   but are often easier to deal with 

in that we can view car as returning the first element of the list and 

cdr as returning the list obtained by deleting the first element of the 

original list.    Since we want the constructor list to be variadic,   it is 

defined so that it will accept either a single argument or a row of 

arguments,   i. e. ,   list(x)  = if atomic(x) then cons(x,NIL) else if ILK(x) 

= row then cons(x., cons(. . . , cons(x   , NIL). . . ) where n   i s the length 

of x. 

Finally we can define a number of functions on lists  - these are 

standard functions in LISP,   implemented by means of great reliance on 
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the idea of recursion.    Append creates a list of all the elements of 

its arguments lists.    Reverse creates a list in which the elements 

of the original list appear in the reverse of their original order. 

Showd and showp make recursive calls on each other in order to 

print a list showing the list structure with parentheses.    Seek takes 

as arguments an atom and a list of pairs,   and returns the list whose 

elements are the right halves of all   pairs whose left half is the atom. 

Replace changes all occurrences of an atom in a list to another atom. 

Same determines whether two list structures are the same and member 

determines whether one list is a sublist of another.    These last two 

are used by union to construct a list whose elements are those in the 

union of the sets of elements of the two argument lists.    Finally,   map 

applies a function to successive cdrs of a list and returns   the final cdr 

(NIL for a list) as result. 

$REPLACE(A,B,L)R$5 
[1]     R<~B 
[2]      (L=A)-7 
[3J     ATOM(L)-»6 
[4]     R<—CONS(REFLACE(A,B,L[CAR]),REPLACE(A,B,L[CDRj)) 
53   +7 

[6]     R<~L 
$ 

$SAME(S,T)R55 
AT0M(S)+5 
AIDM(T)->5 
R<—SAME(CAR(S),CAR(T))XSAME(CDR(S),CDR(T)) 

1 
2 

L 3 J 

[ 5 ]     R<—s-T 
$ 
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$SH0WD(L)SS 
[1] ATOM(L)-*7 
[2] TYPE("(") 
[3] SHOWD(L[CAR]) 
[4] SHOWP(L[CDR]) 
[5] TYPEC')") 
[6] +8 
[7J TYPE(L) 

[1] 
2,| 
31 

■4 
[5] 
t6] 

$SH0WP(L)?J 
(L=NIL)->7 
AT0M(L)-»6 
SHOWD(CAR(L)) 
SHOWP(CDR(L)) 
+7 
TYPE(L) 

") 

[1] 
[2] 

[1] 
2 

[3] 
[4 
[51 

y 9 $SHOW(L 
SHOWDtL 
TYPE(n 

SSEEK(L,A)R$5 
ILK(L)=0)^6 
(At=CAR(CAR(L)))-*4 
R<~C0NS(CDR(CAR(L)),R) 
L<—CDR(L) 

$HEVERSE(X)RJJ 
[1]      (ILK(X)=0)->3 
[ 2 ]     R<~ APPEND (REVERSE (CDR(X)) ,CONS (CAR(X) ,NIL) ) 

$ 

$LENGTH(X)RJ5 
[1]     AT0M(X)->4 
[ 2 ]     R<—1+LENG1H (CDR(X) ) 
hi    -5 
[4]     R<—0 

$ 
$APPEND(X,Y)R$$ 

[1]     R<~ Y 
[2]      (lLK(x)=0)-4 
[ 3 ]     R<—CONS (CAR (X), APPEND (CDR( X) ,Y)) 

$ 
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1 
2 

4 

$MEMBER(S,T)R5 5 
AT0M(T)->4 
R<—SAME(S,T)+SAME(S,T[CAR])+MEMBER(S,T[CDR]) 
+5 
R<„S=T 
$ 

$UNION(Ll,L2)RjS5 
1] (L2=NIL)->6 
2] MENIBER(L2[CAR],L1)->4 

[3] S<—C0NS(L2[CAR],S) 
"41 L2<--CDR[L2] 
[5] -1 
[6] R<—-APPEND (LI, S) 

$MAP(F,L)RJ5 
lU     P(L)/   N 

[2]     AT0M(L)->5 
[3]     L<—CDR(L) 
[4]    -1 
[5]     R<—L 

$ 

Some instances of output obtained during   runs with this extension 

are as follows: 

P<—LIST(MKR0W(nA\l,"B\2)) 
SHOW(P) 

(A1B2) 
PP<~LIST(MKROW(P,P,P)) 
SHOW(PP) 

((A1B2)(A1B2)(A1B2)) 
PP[CDRjCAR]<—LIST(MKROW(4,5,5)) 
SHOW(PP) 

((A1B2)(455)(A1B2)) 
Q<~ APPEND (PP,PP) 
SHOW(Q) 

((A1B2)(455)   A1B2)(A1B2)(455)(A1B2)) 
R<_LIST(MKROW(l,2,LIST(MKROW(f,A,,,nB")),3)) 
SHOW(R) 

(12(AB)3)        , .   .. 
SHOW (REVERSE (R)) 

(3(AB)21) 
MAP(SHOW, R) 

[12(AB)3) 
2(AB)3)- 
(AB)3) 
3) 
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S<~LIST(MKROW(CONS(MA,,,l),CONS(nB,,,2),CONS(,,C,,,3))) 
SHOW(S) 

((A1)(B2)(C3)) 
SHOW (SEEK (S," A1')) 

(1) / X S<_APPEND(S,S) 
SHOW(s) 

((A1)(B2)(C3)(A1)(B2)(C3)) 
SHOW (SEEK (s/V )) 

(11) 
R<_LIST(MKROW(nAM ,!IB" )) 
S<~LISTCMKROWTA" ,R,"Cr' )) 
T<~ LIST(MKROW(R,S/An,R)) 
SHOW(R) 

(AB) 
SHOW(S) 

(A(AB)C) 
SHOW(T) 

((AB)(A(AB)C)A(AB)) 
t(S,T) 

1 

0 

2 

MEMBER! 

MEMBER(T,S) 

MEMBER(R,T) 
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C   Polynomials 

Having defined a definition set for lists,  we can use it to 
n . ' 

model polynomials.    A polynomial .£. a.x   is   representable as a 

vector (a.) ~    but this representation is inefficient if many of the 

a.'s are zero.    In that case we prefer to represent a polynomial 

as a list of terms,  where 

Term = struct(deg:integer ,   coef:integer ). 

The zero polynomial is the NIL list.    The following functions then 

suffice to construct,   output,   add and multiply polynomials.     Examples 

of the output they produce are given. 

$ADDP0LY(X,Y)RJD1,D2,SJ 
I] (X{=NIL)-»4 
2] R<—Y 

[3J +20 
.4] (Y^NIL)-*7 
[5] R<—X 
6] +20 
7] D1<~CAR(X)[DEG] 
8] D2<—CAR(Y)[DEG] 
9] (Dl=(=D2)-*l6 

' 10 ] S<~CAR(X) [COEF ]+CAR(Y) [COEF] 
II] (S=|=0)-»l4 
12] R<~ADDPOLY(CDR(X),CDR(Y)) 

[13] +20 
[14] R<—CONS(MKSTR(DEG:DI,COEF:S),ADDPOLY(CDR(X),CDR(Y))) 
[15] +20 
[16]   (Dl-D2)->19 
[17]   R<—C0NS(CAR(Y),ADDP0LY(X,CDR(Y))) 
[18]  +20 
[19]  R<~C0NS(CAR(X),ADDP0LY(CDR(X),Y)) 
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$SHOWPOLY(X)jL$ 
[I] (X=NIL)->17 
[2] L<—CAR(X) 
[3] ((L[COEF]=l)xL[DEG]fO)->5 
[4] TYPE(L[COEF]) 
[5] (L[DEG]=0)->10 
[6] TYPE(,fXu) 
7J (L[DEG]=1)->10 

[8]   TYPE("T") 
[9]     TYPEtLfDEG]) 
[10]   (CDR(X)=NIL)-*17 
[II] X<—CDR(X) 
[12]  CAR(x)[C0EF}*l4 
[13] -2 
[14]  TYPE("+n) 
[15] -*2 
[16]  TYPE(n0") 
[17]  TYPB(" 

[1] 
[2] 
[3] 
[4] 

$P0LY(R)P$J5 
J<~LNGTH(R) 
P<--CONS(MKSTR(DEG:R(J),COEF:R(J- I)),P) 
J<_J-  2 
J+2 

$NULPOLY(Pl,P2)Rt5 
[1]      ((Pl=NIL)+P2=NIL)->3 
[2]     R<—ADDP0LY(DIST(CAR(P1),P2),MULP0LY(CDR(P1),P2)) 

$DIST(T,P)RJL1,L2* 
[1]      (P=NIL)-»5 
[2]     Ll<--T[DEG]+PLCAR? DEG] 
[3]     L2<~T[COEF]xP[CAR5COEF] 
[4]     R<—C0NS(MKSTR(DEGtLl,C0EP!L2),DIST(T,P[CDR])) 

-40- 



-I*- 

((zr ä ) ÄiOciaav) Äi OdMOHS 
S+3iXT-5iXe 

(Z)äIOJMOHS 

SiX6+eiX9+l7^X 
((Ä'XjÄlCHTnNjÄlOcIMOHS 

xe+six 
(Ä)ÄlOcIMOHS 

((V £'E'T)t\o}imjxrioa~>A 



D   For mula s 

In the next extension we will manipulate formulas,   i. e. ,   data 

defined by the following definitions: 

Form = struct(lp:formula, op:literal, rp:formula) 

Formula = form or atom 

Atom = literal  or real. 

First we define several functions which perform arithmetic operations 

on formulas and do some simplification (using the identities l*x = x*l = x, 

0+x = x+0 = x and 0*x = x*0 = 0).    The functions named SADD,  SMUL, 

SSUB and SDIV are those invoked by the infix binary operators +,   *, 

-. and /,   respectively.     They normally are functions that take any 

combination of integer and real arguments,   but here we redefine 

them as follows: 

REAL<—-1 
VARIABLE<~3 
STRUCT<—4 

$PORMULA(X,Y,Z)R55 
[1]     R<_MKSTR(LP:X,OPtY,RPtZ) 

SADD(X,Y)ZJ5 
X=0.0)+11 
Y=0.0)-*9 
ILK(X)=REAL)-*6 

Z<—FORMULA (X,"+" ,Y) 
-»12 
(lLK(Y)^REAL)->4 
Z<— RPLUS(X,Y) 

Z<~X 
[10]  -^12 
[11]  Z<—Y 

1 
2 

[3 
4 

[5] 
6 

9] 
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'1*1 
'2 "I 
3 
4 
5 
6 

;7j 
8| 

üSSUB(X,Y)Z$$ 
y=o.o)->5 

(lLK(x)=REAL)->7 
Z<— FORMULA (X/1-11 ,Y) 
-9 
z<—x 
+9 
(lLK(Y)+REAL)-»j 
z<— RSUB(X,Y) 

1 
'2'| 

r9!l 
10 
ll 
12 

,13, 
14 
:i5 

:fSMUL(X,Y)Z55 
Y=1.0)-»12 
X=1.0)->10 
X-O.OJ+8 
Y=0.0)->8 
ILK(X)=REAL)->14 

Z<--PORMULA(X/X
M
 ,Y) 

->16 
Z<—0.0 
-►16 
z<—y 
->16 
z<~x 
+16 
(ILK(Y)+REAL)-*6 
Z<—EMULT(X,Y) 
$ 

$SDIV(X,Y)Z}5 
I] (Y=1.0)->8 
2]   X=0.0H6 
;3]  (ILK(X)=REAL)->10 
;4]  Z<~ FORMULA U,"/", Y) 
'5] +12 
6]  Z<—0.0 
7] +12 
8] Z<—X 
"9j +12 
.10] (lLK(Y)fREAL)->4 
II] z<—RDIV(X,Y) 

$ 
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We now define recursive functions which output formulas,  differ- 

entiate them and substitute formulas for variables in other formulas. 

Examples of output follow the definitions. 

$PRINT(X)5 5 
[1J (ILK(X)=STRUCT)-»4 
[2] TYPE(X) 
[3] ->9 
[4] TYPE("(") 
[5] PRINT(X[LP]) 
16] TYPE(X[OP]) 
[7] PRINT(X[RP]) 
[8] TYPE('T) 

") 

[1] 
[2] 

[1] 
2 
[3: 

[5: 
[fi! 

[9: 
10 
11 
12 
[13 
[14 

16 
17 
18 

[19] 
20 
[21] 
22" 

$SHOW(X)5 5 
PRINT(X) 
TYPEC' 

$ 

&DERIV(E,X)R$UDASH,VDASH$ 
ILK(X)fVARIABLE)->23 
E=X)-*20 

;ILK(E)=STRUCT)->5 
.22 

UDASH<--DERIV(E[LP ],X) 
IfX) 

->14 
->16 
-18 

VDASH<~DERIV(E[RP] 
fE[0P]=" + n)-»12 
'E[0P]=M-M )^ä 

;E[OP]=
,,
/
,,
I 

!E[0P]=nx") 
+23 
R<—-UDASH+VDASH 
-23 
R<—UDASH-VDASH 
+23 
R<~( (UDASHxE[ RP ] )-VDASHxE[ LP ] )/E[ RP ]xE[ RP ] 
->23 
R<-- (UDASHxE[RP])+VDASHxE[LP] 
-23 
R<--1.0 
-23 
R<_0.0 
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1 
2 
3 

$SUBST(E,X,A)R$S 
(ILK(X)±VARIAELE)-*9 
(lLK(E)fSTRUCT)->5 
R<—PORMULA(SUBST(E[LP],X,A),E[OP],SUBST(E[RP],X,A)) 
+9 
(E=X)+8 
R<—E 
+9 
R<—A 
$ 

F<~ (,,A,,+,,X,,)/(,,B,V,Xn) 
SHOW(DERIV(F/X")) 

(((BfX).(A+X))/((BfX)x(BfX))) 
Q<_PxF 
SHOW(Q) 

(((A+X)/(BfX))x((A+X)/(&fX))) 
SHOW(DERIV(Q,nX")) 

(((((BfX)-(A+X))/((BfX)x(BfX)))x((A+X)/(BfX)))+((((BfX)-(A+X))/((B+X)x 
(BfX)))x((A+X)/(BfX))n        xx 

SHOW(SUBST(F,f,An ,F)) 
((((A+X)/(BfX))+X)/(BfX)) 
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E   Vectors 

In this extension we define functions that do arithmetic with 

3-vectors,  where 

3-vector = struct (i:arith, jtarith, k:arith) 

Arith   =   real  or integer. 

The infix arithmetic operators are redefined to accept arguments 

that are any combination of arith and 3-vector and to produce appro- 

priate results.    Par and perp are predicates that test whether a 

pair of vectors are,   respectively,   parallel or perpendicular.    The 

definitions and some results are as follows: 

$VECTOR(A,B,C)R5 5 
[1]     R<_MKSTR(l:A,J!B,KfC) 

$ 

ADD<—SADD 
SUB<—SSUB 
MUL<— SMUL 
EQ<~EQUAL 

$SADD(X,Y)R5 5 
[1]  R<—OP(X,Y,ADD) 

$SSUB(X,Y)R5 5 
[1]  R<—OP(X,Y,SUB) 

$0P(X,Y,Z)RJL5 
[1]  (ILK(XU4J^7 
2]     (lLK(Y)f4)^5 

fc3  R<~VECT0R(Z(X[I],Y[I]),Z(X[J],Y[J]),Z(X[K],Y[K])) 
4] -»11 
5] Y<—VECTOR(Y,Y,Y) 

->3 
(ILK(Y)W)-*10 
X<--VECTOR(X,X,X) 
-►3 

:10] R<—Z(X,Y) 
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V 
[5] 

$EQUAL(X,Y)RJJ 
TlLK(X)+4}-*5 
(ILK(Y)^)-*5 
R<—(X[l]- 

R<~EQ(X,Y) 

Y[l])x(X[J]==Y[J])x(X[K]=Y[K]) 

[1] 
[2] 
[3] 
[4] 
5 

[6] 
[7] 
[8] 
[9] 
[10] 
[11] 
[12] 
[13] 

$SMUL(X,Y)R5C1,C2,C3$ 
(ILK(X)44)-KL0 
(IK(Y)+4)->8 
Cl<--(X[J]xY[K])-X[K]xY[J] 
C2<~ (X[ K]XY[ I ] }-XL I ]XY[K] 
C3<~(X[l]xYlJ])-X[J]xY[l] 
R<—VECTOR(C1,C2,C3) 
-►14 
R<—VECTOR(X[l]xY,X[J]xY,X[K]xY) 
-►14 
(lLK(Y)+4hl3 
R<~VECTOR(XXY[I],XXY[J],XXY[K]) 
+14 
R<~MUL(X,Y) 

") 

$SH0W(X)jJ 
[I] TYPE(X[I]J 
[2] TYPE("I") 
[3] IFLJM(5,X[J]) 
[4] TYPE(V') 
[5] TYPE(X[Jl) 
[6] TYPE(,,Jn) 
[7] IFLJM(9,X[K]) 
[8]   TYPE(V 
[ 9 ]     TYPE 
[10]   TYPE 1 
[II] TYPE! 

$ 

$DOT(X,Y)R55 
[1]     R<--(X[l]xY[l])+(X[j]xY[J])+X[K]xY[K] 

$PERP(X,Y)RJ5 
[1]     R<_ZER0(D0T(X>Y)) 
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$PAR(X,Y)R$L$ 
[1]     L<—XX Y 
[2]     R<--ZERO(L[l])xZERD(L[J])xZERO(L[K]) 

$ 

$ZERO(X)Rj; 
[1]     R<~(X=0)+(X=0.0) 

$ 

R<„VECTOR( 1,2,5) 
S<--VECT0R(2,-3,7) 
SHOW(R) 

1I+2J+5K 
SHOW(S) 

2I-3J+7K 
SHOW(R+S) 

3I-1J+12K 
SHOW(RxS) 

29I+3J-7K 
DOT(R,S) 

31 
PERP(R,S) 

0 
PAR(R,S) 

0 
T<~ 2xR 
SHOW(T) 

2I+4J+10K 
PAR(R,T) 

1 
PERP(R,RXS) 

1 
SHOW(4+R) 

5I+6J+9K 
SHOW(R+3) 

4I+5J+8K 
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F   Trees   and   Syntax 

In this extension we create trees and use them in various 

syntax manipulations.    A tree is defined by 

Tree = struct (fatherrptr, rightbrothenptr, firstsomptr, 

value:atom) 

Ptr = NIL £r pointer 

Pointer = ref(tree) 

Atom = literal or integer or real or NIL. 

First we redefine the infix binary operators so that they will create 

trees,   i. e. ,   so that a a b (where a is a binary operator) is a tree 

whose value is a,   whose rightbrother and father are NIL,   and whose 

firstson is a tree with value = a,   father = a a b,   firstson = NIL,   and 

rightbrother = a tree with value = b,   rightbrother and firstson = NIL, 

and father = a a b.    This is an instance of the use of ref 's to share 

data since the node with value a is shared as father by each of its 

sons.    This representation of a tree with three links associated with 

each node is that suggested by Cheatham in [7], 

$SADD(X,Y)RJ5 
[1]     R<„ OPER(X,Y," + H) 

$ 

$SSUB(X,Y)R$5 
[1]     R<~OPER(X,Y,n-n) 

$SMUL(X,Y)R$5 
[1J     R<~OPER(X,Y/x") 

$SDIV(X,Y)R55 
11J     R<~0PER(X,Y,,7n ) 
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$0PER(A,B,C)R$5 
[I] TILK(A)=MU->8 
[2] (lLK(B)+4)->10 
[ 3 ] A [ RIGHTBROTHER ]<---MKREF (B) 
[4] R<_MKSTR(FA"IHERtNIL,RIGHTBROTHER:NIL,FIRSTSON!MKREF(A),VALUE!C) 
[5] A [FATHER ]<—MKREF(R) 
[6] B [ FATHER ]<—MKREF(R) 
[7]     +12 
[8]     A<~MKSTR(FATHER:NIL,RIGHTBROTHER:NIL,FIRSTSONtNIL,VALUE:A) 
[9J     -2 
[10] B<—MKSTR(FATHER:NIL,RIGHTBROTHER:NIL,FIRSTSON:NIL,VALUE:B) 

[II] ->3 

The problem of how to output the constructed structure is 

somewhat more difficult in this than in the previous extensions given, 

particularly since a tree is an inherently two-dimensional object 

and we wish to display it in a linear medium. There are several 

standard ways of doing this, all involving the traversal of the nodes 

in some specified order. We show three typical ones. In prefix 

walk order we start at the roots of the tree and at each step go to 

(1) the firstson of the current node if there is one or 

(2) the rightbrother if there is no firstson (in general,   the 

right neighbor - the rightbrother of the closest ancestor 

who   has a rightbrother). 

In suffix walk order,   we traverse terminal nodes in left to right order, 

always traversing an interior node as soon as we have encountered all 

of its sons.     Finally,   in constant depth walk order,   we traverse first 

the root,   then all sons at depth two,   and so on.     The prefix and suffix 

functions use explicit recursion to traverse subtrees,   whereas the 

constant depth function uses a push down stack,   i. e. ,   a datum defined 
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by 

") 

Stack = struct (stk:rowlOO, level;integer) 

RowlOO = seq ( 100). 

Output obtained with these functions follows their definitions. 

$SHOWPREFIX(X)$5 
[1]     SHOWP(X) 
[2]     TYPET 

$ 

[1] 
[2] 
[3; 
[4] 
5 

[6] 

.9. 
[10J 

$SHOWP(X)*,L5 
TYPE (X[ VALUE]) 
(X[FIRSTS0N]=NIL)->11 
TYPE(n(") 
L<—VLPTR(X[FIRSTSONj) 
SHOWP(L) 
(L[RIGHTBROTHER]=NIL)-HO 
TyPE( n;i) 
L<--VLPTR(L[RIGHTBRDTHER]) 
+5 
TYPE(")n) 
$ 

1 
2 
3] 

5] 
6 

9 
10] 

$SHOWS(A)$L5 
(AIFIRSTS0N]=NIL)-*10 
TYPE(M(") 
L<—VLPTR( A[ FIRSTSON ]) 
SHOWS[L) 
(L[RIGHTBR0THER]=NIL)->9 
TYPE("," ) 
L<—VLPTR(L[RIGHTBROTHER]) 
->4 
TYPE(,,)n) 
TYPE(A[VALUE]) 
$ 

") 

$SHOWSUFFIX(A)5 5 
[1]     SHOWS(A) 
[2]     TYPE(I? 

$ 
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$SH0WCD(A)5X,I$ 
11J   S1<~MKSTR(STKJMKNRW(50),LEVEL!0) 
[2]   PUSH(MKREF(SI),MKREF(A)J 
[ 3]   S2<~MKSTR(STK!MKNRW(50) ,LEVEL:0) 
[4]     ASIGN(l,l,TYPE(n(M)) 
[5]     X<--VLPTR(Sl[STK](lJ) 
[6]     TYPE  "   ") 
[7]     TYPE (X[ VALUE]) 
[8]      (X[FIRSTS0N]=NIL)+10 
[9 3     PUSH(MKREF(S2),X[FIRSTSON]) 
[10]   (X[RIGHTBR0THER]=NIL)->13 
[11]  X<~VLPTR(X[RIGHTBROTHER]) 
[12] +6 
[13]   (l=Sl[ LEVEL ])->l6 
[14]   I<—IPLUS(I,1) 
[15] +5 x   % 
[16]  TYFE(")") 
[17]   (S2[LEVEL]=0)->21 
[18]   Sl<—S2 
[19]   S2[ LEVEL ]<—0 
[20] -*4 

$ 

") 

$SHOWCONSTANTDEPTH(A)5 5 
[1]     SHOWCD(A) 
[2]     TYPE(" 

[1] 
[2] 

$PUSH< 
VLPTR( 
VLPTR( 

Y) s • 
' [LEVEL]<~VLPTR(X)[LEVEL]+1 
[STK] (VLPTR(X) [LEVEL] )<—Y 
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Y<~ (3f7)-(4x8)/5 
SHOWPREFIXfY, 

-(+(3,7),/(x(4,8),5) 
SHOWSUFFIX(Y 

((3,7)+,((4,8)x,5)/)- 
SHOWCONSTANTDEPTH(Y) 

( -)( + /)( 3 7 x 5)( 4 8) 
A<—Y+Y 
SHOWPREFIX(A) 

+(-(+(3,7),/(X(4,8),5)),-(+I3,7),/(X(4,8),5))) 
SHOWCONSTANTDEPTH(A) 

( +)( - -)(+ / + /)(  3 7 x 5 3 7 x 5)( 4 8 4 8) 
SHOWSUFFIX(A) 

(((3,7) + ,((4,8)x,5)/)-,((3,7K,((4,8)x,5)/)-)+ 
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A major application of the data type tree occurs in the prob- 

lem of parsing a sentence generated by a general context free gram- 

mar.    Rather than show functions which solve this general problem, 

we develop routines which parse a sentence in a context free grammar 

which is simple precedence with f and g functions (qv.   [7]).    The 

variable grammar is a representation of a simple precedence gram- 

mar,   namely 

S ::= E RPAD 

E ::= E+T 

E ::= T 

T ::= A 

T ::= AT 

The first rule is not included in the representation,   since it is rec- 

ognized "by hand" by the functions we define.    Parse employs a 

push down stack to save the fragments of the parse tree constructed 

at some stage in a parse,   and uses the f and g functions to decide 

when to make a reduction.    Match makes reductions,   recognizing 

the rule to be used,   and growing the appropriate piece of tree.    When 

parse sees the right pad symbol,   it constructs the final tree fragment - 

the root  node,   and returns this as result.     The functions and some 

typical output are: 
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1 
2 

["3 
4 

I 
9J 

$PARSE(X,GR,F,G)RjZ,RR,Xl,l5 
Z<—-MKSTR(STK!MKNRV(50 ),LEVEL:0) 
RR<—MKREP(Z) 
ASGNC(X1,VLPTR(X)) 
PUSH(RR,MKREF(N0DE(NIL,NIL,NIL,X1(1)))) 
I<~2 
(F(VLPTR(Z[STK](Z[LEVEL]))[VALUE])-G(X1(I)))->11 
PUSH (RR,MKREF(N0DE(NIL,NIL,NIL,Xl(l)))) 
(Xl(l)=nRPADn)->13 
I<—1+1 

[10] -*6 
[11] MATCH(RR,GR) 
[12] -*6 
[13]  I<—1 
[14]  VLPTR(Z[STK](l))[RIGHTBROTHER]<— Z[STK](l+l) 
[15] VLPTR(Z[S

,
TK](I))[FATHER]<—MKREF(R) 

rl6]   I<—1+1 
t17]   (l^Z[LEVEL] )->l4 
[18]  R<—NODECNIL^IL^ZtSTKjflJ/'S") 
'19] VLPTR(Z[STK](I))[PATHER]<—MKREP(R) 

$MATCH(RR,GR)jI,M,Z,J,K,N,S,T$ 
I<—1 
ASGNC(T,VLPTR(GR)) 
ASGNC(Z,VLPTR(RR)) 
J<—LNGTH(T(l)[RP]) 
K<—J 

1] 
2] 

[3] 

[5] 
[6] N<—Z[ LEVEL ]+K-J 
[7J N+10 
[8] I<—.1+1 
[9] •*** 
10] (T(l)[RP](K)=VLPTR(Z[STK](N)) [VALUE] )->12 

1 -*8 
K<—K- 1 
K->6 
EQUAL(M<—N,M,Z[LEVEL ])-*19 
VLPTR(Z[STK](M)}[FA0HER]<—MKREF(S) 
VLPTR(Z[SIK](M))[RIGHTEROIHER]<~Z[STK](M+I) 
M<—-M+l 

[10] (M^=Z[LEVEL]V>15 
[19] VLPTR(Z[STK](M)) [FATHER]<—MKREF(S) 

' Z[ LEVEL ]<—N 
S<~NODE(NIL,NIL,Z[STK](N),T(l)[LP]) 

[22] Z[STK](NJ<--MKREF(S) 
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$N0DE(A,B,C,D)R$5 
[1]     R<~ MKSTR(FATHER:A,RIGHTBR0THERSB,FIR3TS0N:C,VäLUE:D) 

$F(X)RJ5 
[1J EQUAL(X,nSu ,R<--0)->7 
[2] EQUAL CX/'E",^—0)->7 
[3] EQUAL(X,nTn,R<--l)-*7 
[4] EQUAL (x,nAM,R<~l)->7 
[ 5 ] EQUALfX, "+" ,R<--0}-»7 
[6] EQUAL(X,nRPAD" ,R<—0)->7 

$G(X)R55 
[1] EQUAL(X,"S",R<—0)-*7 
[2] EQUAL(X/EM,R<--0)->7 
[3] EQUAL (X,"T

!!
,R<—-l)->7 

[4] EQUAL(X,"An,R<~2}->7 
[5] EQUAL(X,n + n ,R<—0)->7 
[6] EQUAL(X,"RPAD" ,R<—-0)->7 

RULE1<—MKSTRfLP^E^RPJMKROWP'EVV',MTn)) 
RULE2<~MKSTR(LP:nT,^RPtMKF0w(,,AM,^Tf,)) 
RULE3<~MKSTR(LP:"E",RP tMKROW("Tn )) 
RULE4<~MKSTR(LP:nT" ,RP:MKROW(MAn)) 
GRAMMAR«--MKREF(MKROW (RULE1, RULE2, RULE3,RULE4) ) 
X<~MKREF(MKROW(nAn,nA!"   li + l,,IIAli,,, + ,l,l,A,f ,,fRPADÄ ) ) 
Y<—PARSE (X, GRAMMAR, F,G) 
SHOWPREFIX(Y) 

S(E(E(E(T(A,T(A))),+,T(A)),+,T(A)),RPAD) 
SHOWSUFFIX(Y 

(((((A,(A)T)T)E,+,(A)T)E,+,(A)T)E,RPAD)S 
SHOWCONSTANTDEPTH(Y) 

(   S)(   E   RPAD)(   E  +  T)(   E  +  T A)(   T A)!   A  T)(   A) 
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G   Complex   and   Rational   Arithmetic 

In this extension we redefine the.arithmetic operators to 

accept arguments that are a pair of complex numbers (complex = 

struct (rp:real , ip:real, type:"comp")) or a pair of rationals (rational: 

struct(num:integer, deminteger,type: "ratio")) as well as the atomic 

arguments they previously accepted.    Complex is the constructor 

for complex numbers and   SDIV constructs rationals when called 

with a pair of integer operands.    Hence the infix operator "/" acts 

sometimes as a constructor and sometimes as a normal divide op- 

erator.    We note that the rational constructor function always pro- 

duces a rational whose num and den components are coprime,   using 

the gcd (greatest common divisor) function to this end.    The func- 

tions and some output produced by them are as follows: 

DIV<—SDIV 
MÜL<— SMUL 
ADD<—SADD 
SUB<— SSUB 

$COMPLEX(A,B)R5 5 
[1]     R<—MKSTR(RPtA,IP:B,T5fPEt"C0MPlf) 

$ 

$RATI0(A,B)RJG5 
[1]     CK—GCD(A,B) 
[2]     R<—MKSTR(NUM:IDIV(A,G),DEN:IDIV(B,G),TYPE!,,RATIOn) 
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5SDIV(A,B)R5D5 
(ILK(A)=2)X(ILK(B)=2) )->7 
ILK(A)=I)->5 

>A[lYPE] = f,COMP" )->9 
'AtTYPEj^RATIO" )->12 

[5]     R<--DIV(A,B) 
[6]    -13 
[7]     R<—RATIO (A,B) 
[8]   -13 
[9]     D<—(B[RP]xB[RP])+B[IP]xBriP] 
[10] R<~COMPLEX(((X[IP]XY[IP])+X[RP]XY[RP])/D,((X[IP]XY[RP])-X[RP]XY[IP])/D) 
[11] -»13 
[12] R<~(A[NUM]XB[DEN])/A[DEN]XB[NUM] 

$ 

$SMUL(A,B)R5 5 
[1]  ((ILK(A)=1)+ILK(A)=2)+4 
[2]  (A[TYPE]=nC0MPn)->8 
[3]  (A[TYPE 1="RATIOn )-*6 
[4]  R<—MUL(A,B) 
[5]     +9     , 
[ 6 ]     R<_ (A[ NÜM ]xB[NUM ] )/A[ EEN ]xB[DEN ] 
[7]     +9 
[8]     R<~COMPLEX((A[RP]xB[RP])-A[lP]xB[IP],(A[RP]xB[lP])+A[IP]xB[RP]) 

$ 

[1] 
[2] 
[3] 
[4] 
5 

[6 
[7 
18] 
[9" 

$SADD(A,B)RjCRPR,G5 
IPLUS(ILK(A)=I,ILK(A)=2)+4 
(A[TYPE] = 

,1
C0MP")->9 

(A[ TYPE] »"RATIOfl )->6 
R<_ADD(A,B) 
-»10 
CRPR<—(A[NUM]XB[DEN])+A[DEN]XB[NUM] 
R<—CRP Wk I DEN ] xB [ DEN ] 
-»10 
R<—COMPIEX (A[ RP]+B[ RP ], A[ IP ]+B[ IP ]) 
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[1] 
[2] 
[3] 

\i\ 
m 
12) 
121 
[9] 

$GCD(X,Y)RJ5 
X-*3 
x<~o-x 
Y+5 
Y<—0-Y 
EQUAL (Y,1*R<~1 
EQUAL(X,I*R<—1 
EQUAL(X,0,R<--Y 
EQUAL(Y,0,R<~X 
(X-Y)->12 
y<„y-X 
+5 
X<~X-Y 

$ 

1 
2 

[5] 

I! 
:io. 

12 

$PRINT(X)jl 
((ILK(X)=2)+(ILK(X)=3)hl2 
TYPE(X(l)) 
(X[ TYPE ]«' RATIO" )-»9 
IFLJM(6,X[IP]) 
TYPE I r ,i+f,) 

]6]     TYPE(X[IP]) 
[7J     TYPE ("I 

■►13 
TOPEC/") 
X[DEN] 
-13 
X 
$ 
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A<—COMPLEX (1.0,-2.5) 
.0,4.0) B<--C0MPLEX(3 

PRINT(A) 
1.0-2.51 

PRINT(B) 
3.0+4.01 

PRINT (A+B) 
4.0+1.51 

PRINT(AXB) 
1.3E1-3.5I 

PRINT(A/B) 
-2.8E-1-4.6E-1I 

A<~4/7 
B<-3/2 
PRINT(A/B) 

8/21 

6/7 

29/14 

4/1 

PRINT (AXB) 

PRINT(A+B) 

C<—24/7  % 
PRINT(A+C) 
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[1] 

_5J 
[6 

I] 

H.      Block   Structure   and   Own   Variables 

The next extension we describe is not implemented in the 

current version of CEL (though the additions to the current CEL that 

are necessary to make it implementable are straightforward).    The 

base language of CEL has only two levels of block structure - vari- 

ables are either global or local to a function.    The following extension 

would add multilevel block structure and scoping of variables (in the 

ALGOL sense). 

The primary data structure that we use is an environment, 

defined as follows: 

Env = struct (father: block, current: struct) 

Block = NIL or env. 

We note that the type of env[current] is not completely specified. 

This is convenient in view of the way data of type env are to be con- 

structed and is made possible by the absence of declarations in CEL. 

We first define functions that open and close blocks and decide which 

variable an identifier refers to in a particular environment. 

$BEGIN(L)|I,XJ 
I<—LNGTH(L) 
X<—MKNST(l) 
J<~ 1 
(J-IM 
NAME(X(J),L(J)) 
J<~J+1 
+4 
CURRENT<~MKREF(MKSTR(FA1HER:CURRENT,CURRENT:X)) 

$END()J5 
[1]     CURRENT<—VLPTR(CURRENT) [FATHER] 

$ 
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[1 
2 
3 
4" 

$SELECT(A)R*LJ 
L<—-CURRENT 
ELEMENT(A,VLPTR(L) [CURRENT ])->7 
(VLPTR(L) [ FATHER ]=NIL)-*6 
L<~VLPTR(L) [FATHER] 

[5]    ">2 
[6]    ERROR() 
[7]     R<--VLPTR(L)[CURRENT*A] 

The argument to begin is a row of the identifiers to be local to the 

block being opened.    The unimplemented (as yet) library function 

MKNST creates a struct,  x, whose length is the number of local iden- 

tifiers.    The library function NAME then attaches the names of the 

elements of 1 to the components of x.    Finally,  the environment thus 

created is made the current environment with,   as father,   the previous 

environment.    End simply transforms the current environment to the 

previous one.    Select,   given an identifier,   finds the version of it whose 

scope includes the current block using the (currently unimplemented) 

library function ELEMENT which determines whether a struct has 

a component with a specified name.    One presumes that this extension 

would be used in conjunction with a syntax mapper in which <identifier> 

was converted to the equivalent in the base syntax of select (<ident- 

ifier>).    We note that we  can easily adjust this extension,   by making 

'current' an argument to begin,   end and select,   so that we can deal 

with multiple parallel environments. 
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We can use a similar technique to obtain the effect of own 

variables,   i. e. ,  variables local to a function whose lifetime properly 

contains the time during which the function is being executed.    To do 

this we define a data type 

funcwithowns = struct(func:function, vars;struct). 

Now we must define a function that is to take own variables with a 

header such as "$f(x) ...   " where x is a struct whose component 

names are those of the formal parameters and own variables of f. 

Within f,  we use a mechanism like the function select (but simpler, 

since environments are not nested) to get at the parameters and own 

variables of f.    To call f,  we write "call(fprime, x , . . . ,xn)M where 

the x^ are the arguments to f,   fprime = struct(func:f, owns:b),   and 

the syntax mapper transforms "call(fprime, x,, . . . , xn)" to 

f(fprime[vars]) and sets the components of fprime[vars] correspond- 

ing to arguments appropriately. 
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SECTION   VII 

The Implementation of CEL 

CEL is currently implemented in approximately two thousand 

lines of code on a Digital Equipment Corporation PDP-10 Computer, 

a one-address machine with sixteen accumulators and a sizeable in- 

struction set.    The implementation provides the facilities described 

above via several data structures.    Of particular interest are a pair 

of push down stacks which are used to drive program execution and a 

large data area which contains all linked structures used - including 

all program variables as well as program text.    This space is garbage 

collected by means of a modification of the algorithm described by 

Schorr and Waite in [25] (see also [17],   p.   417). 

We hope,   as noted previously,  to make several eventual 

improvements in this implementation.    In particular,   we plan to include 

a Brooker and Morris-like syntax definition mechanism and text editing 

and debugging facilities like those of APL.    Some less important changes 

are also intended,   including the addition of a number of new library 

functions and the improvement of the storage management algorithms 

currently in use. 
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SECTION   VIII 

Conclusions 

We hope that it is clear from the examples given above 

that extensible languages in general,  and CEL in particular,   provide 

mechanisms that make it possible to deal conveniently with many diverse 

problem areas.    We note that each of the examples of Section VI was 

coded and debugged in less than a day's time (often a good deal less). 

By contrast,  the implementers of FORMULA ALGOL required eight 

man years to produce a system containing these facilities [32],    We 

do not have enough experience with programming in extensible languages 

to provide a basis for comparing their practical utility with that of 

the shell and special purpose languages,   particularly in large appli- 

cations.    But we can point to the relative ease of implementing exten- 

sible languages and programming in them (especially when conver- 

sational features are included) as very significant advantages of ex- 

tensible languages.    Even where object program efficiency is an important 

consideration,   it may often turn out that a compilation facility (together 

with optional declarations in a typeless language) will make object 

program efficiency quite adequate. 
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Appendix   A 

Library   Functions   of   CEL 

The following library functions are included in CEL's cur- 

rent implementation: 

1. ASGNC (respectively ASIGN) takes two arguments and sets the 

value of the first as the second (respectively a copy of the second). 

ASIGN is invoked by the infix operator <--. 

2. BRNCH,   if called with two arguments x and y is equivalent to 

IFGJM(y,x); if called with one argument x it is equivalent to GOTO. 

It is invoked by the infix operator-->. 

3. EQUAL(x,y) = if x is the same as y in value and type then 1 and 

otherwise 0.    It is invoked by the infix operator = 

4. GOTO takes a single integer argument and sets the program counter 

to the value of this argument, 

5. IDIV (respectively IMULT,  IPLUS,   ISUB) takes two integer argu- 

ments x and y and returns [x*-y] (respectively the product,   sum, 

difference of x and y). 

6. IFGJM (respectively IFLJM,   IFZJM) takes two integer arguments 

and sets the value of the program counter as the first if the second 

is positive (respectively negative,   zero). 

7. IL/K(x) returns an integer code for the type of x as follows: 

NIL 0 

real 1 

integer 2 

literal 3 

struct 4 

ref 5 

-66- 



row 6 

oref 7 

identifier 8 

delimiter 9 

code string pair 10 

defined function 11 

library function 12 

packed identifiers 13 

statement 14 

locked function 15 

single row  or struct argument a 

length. 

9. MKNRW(n), n a positive integer,   returns a row x of length n sat- 

isfying (Vl<i<n) (x(i) = NIL) 

10. MKREF(x) returns a pointer to x. 

11. MKROW takes an arbitrary positive number of arguments and re- 

turns a row (whose length is the number of arguments) of copies 

of their values. 

12. MKSTR takes a set of arguments {Li^vi}i=i»   ^O ,   and returns a 

struct x of length n whose i     component is named Li and has as 

value a copy of V^. 

13. NOTEQ(x, y) = if x is the same as y in value and type then 0 and 
otherwise 1.    It is invoked by the infix operator   ^ . . 

14. RDIV (respectively RMULT,  RPLUS,  RSUB) takes two real argu- 

ments and returns their quotient (respectively product,   sum,  differ- 

ence). 

15. SDIV (respectively SMUL,  SPLUS,  SSUB) takes two real or integer 

arguments,   converts the second to the type of the first and invokes 

IDIV or RDIV (respectively IMUL or RMUL,  IPLUS or RPLUS, 

ISUB or SSUB) as appropriate to do the calculation.    It is invoked 
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by the infix binary operator / (respectively *,   +,   -). 

16. TYPE takes a single argument and outputs it to the user's 

teletype if it is real,   integer or literal. 

17. VLPTR(x) returns,  for x a ref,  the datum at which x points. 
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A ppendix   B 

F   and   G   Functions   and   Precedence   Matrix 

for   a   Front   End   Syntax   of   CEL 

G:        S ::=E |  I:E 

E ::=T a E | a E |  T 

T ::=I|  C |  (S) |  T() |  T(S,...,S) |   T[l;...;l] 

g 1 3 3 1 3 3 3 1 3 3 

f • a ( ) » [ ] > C I 

2 : < < > < > < < 

2 a < < > < > < < 

1 ( < < = < = < < 

4 ) > > > > > 

3 • = 

3 [ = 

4 ] > > > > > 

1 » < < = < <   ! 

4 C > > > > > 

4 I B > > > 3 > = > 
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